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Gait Cycle Validation and Segmentation
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Abstract—In this paper, we develop an algorithm to au-
tomatically validate and segment a gait cycle in real time
into three gait events, namely midstance, toe-off, and heel-
strike, using inertial sensors. We first use the physical mod-
els of sensor data obtained from a foot-mounted inertial
system to differentiate stationary and moving segments of
the sensor data. Next, we develop an optimization routine
called sparsity-assisted wavelet denoising (SAWD), which
simultaneously combines linear time invariant filters, or-
thogonal multiresolution representations such as wavelets,
and sparsity-based methods, to generate a sparse template
of the moving segments of the gyroscope measurements
in the sagittal plane for valid gait cycles. Thereafter, to
validate any moving segment as a gait cycle, we compute
the root-mean-square error between the generated sparse
template and the sparse representation of the moving seg-
ment of the gyroscope data in the sagittal plane obtained
using SAWD. Finally, we find the local minima for the sta-
tionary and moving segments of a valid gait cycle to detect
the gait events. We compare our proposed method with
existing methods, for a fixed threshold, using real data
obtained from three groups, namely controls, participants
with Parkinson disease, and geriatric participants. Our pro-
posed method demonstrates an average F1 score of 87.78%
across all groups for a fixed sampling rate, and an average
F1 score of 92.44% across all Parkinson disease partici-
pants for a variable sampling rate.

Index Terms—Gait validation, gait segmentation, gait
phases, sparsity, pattern recognition, zero-phase filters,
convex optimization, wavelets, denoising, accelerometers,
gyroscopes, inertial sensors.
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I. INTRODUCTION

MOVEMENT disorders are common in the general elderly
population, and the prevalence increases with age, from

10% between 60 to 69 years to more than 60% in those over 80
years [1], [2]. The evaluation of movement disorders includes
clinical observations and assessment of gait, both of which may
guide the choice of therapies and rehabilitation strategies [3].

In the last decade, gait analysis has moved away from
equipment-intensive, laboratory-based analyses toward the use
of wearable sensors. Several gait segmentation methods for
ambulatory gait analysis using wearable technology have been
developed, with varying success [4], [5]. These methods em-
ploy sensing modalities such as electromyography (EMG) sen-
sors [6], force-sensitive resistor (FSR) sensors [7]–[9], pressure
sensors [10], [11], inertial sensors [12]–[16], or a combination of
two or more sensing modalities [17]–[22]. Note that the granular-
ity of a gait segmentation method, i.e., the number of phases of a
gait cycle detected, varies with the choice of sensing modalities.
In the case of inertial sensors, the existing methods are based on
thresholding sensor measurements [12]–[14], [17]–[19], [21],
template matching via dynamic time warping [16], or machine
learning based methods such as hidden Markov models [15],
[22]. Across all these methods, gyroscope measurements in the
sagittal plane are the best choice for gait segmentation because
the measurements contain typical time-series patterns such as
“valleys,” “peaks,” and “plateaus.” These patterns are respec-
tively, toe-off and heel-strike, mid-swing, and midstance [16].
While thresholding methods work well in practice, these meth-
ods do not have a mechanism to verify and validate the ob-
servable patterns of the gyroscope signal in the sagittal plane,
which leads to low precision. As an alternative, dynamic time
warping is a pattern matching method that computes a similarity
measure between a template representing a valid gait cycle
and an input sequence [23]. However, the threshold required to
validate an input sequence as a gait cycle is not fixed and exhibits
a large variance [24]. Yet another alternative, machine learning
methods, requires large samples of training data across many
participants and manual segmentation of gait phases, depending
on the granularity of the task, to label the training data. Moreover,
it is computationally expensive to learn the parameters of the
machine learning task.

To overcome these drawbacks, we propose a modular ap-
proach that employs pattern matching and thresholding, to
validate and detect three gait events in the gait cycle, namely
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midstance, toe-off, and heel-strike. To identify the data as sta-
tionary or moving, in the detection module, we first use physical
models that describe zero-velocity events or stationary events of
the sensor data obtained from a foot-mounted inertial system.
Next, in the gait cycle validation and segmentation module,
to generate a sparse representation of the moving segments of
the gyroscope measurements in the sagittal plane for valid gait
cycles, we develop a computationally efficient algorithm called
sparsity-assisted wavelet denoising (SAWD). In SAWD, we
simultaneously combine linear time-invariant filters, wavelets,
and sparsity-based methods to extract a discrete wavelet trans-
form (DWT) coefficient vector as a sparse representation of the
moving segment of the gyroscope measurements in the sagittal
plane. The reconstructed signal obtained from the extracted
DWT coefficient vector is smooth and preserves the typical
observable patterns, such as “valleys” and “peaks,” of a valid gait
cycle for the nonstationary segments of the gyroscope signal in
the sagittal plane. We generate a template of the DWT coefficient
vector by taking the average of the DWT coefficient vectors
obtained using the SAWD algorithm for all valid gait cycles
of a given trial. Unlike the existing methods that require large
amount of training data, we show that our template generation
task requires a small number of valid gait cycles as training
data. Thereafter, to validate any moving segment as a gait cycle,
we compute the root-mean-square error between the generated
template and the sparse representation of the moving segment
of the gyroscope data in the sagittal plane, obtained using the
SAWD algorithm. If the root-mean-square error is less than a
fixed threshold, then the gait cycle is valid. Finally, we find
the local minima for the stationary and moving segments of a
valid gait cycle to identify toe-off and heel-strike gait events.
To demonstrate the robustness of our proposed method, we
herein generate the DWT coefficient vector using inertial sen-
sor data from a healthy participant and evaluate the method’s
performance on data obtained from controls, participants with
Parkinson disease, geriatric participants. In addition, we also
show the threshold-invariance property of our proposed method
across different sampling rates.

The main contribution of our work is the gait validation and
segmentation module. The purpose of the detection module is to
segment the inertial sensor data as stationary or non-stationary
events. There are several advantages of developing a modularity-
based approach for validating and segmenting a gait cycle in
real time. The ability to incorporate the gait cycle validation
and segmentation module into the existing zero-velocity aided
foot-mounted inertial navigation systems which estimates the
position, velocity, and orientation of the foot and accurately
identify phases of the gait that are affected [25], [26]. The
development of novel cueing strategies for mitigating disabling
motor symptoms, such as freezing of gait in Parkinson dis-
ease [27]–[29]. Moreover, the proposed algorithm is compu-
tationally inexpensive, which makes it feasible to implement a
real-time system that can validate as well as segment the inertial
sensor data into three gait events, namely midstance, toe-off,
and heel-strike. Section II describes the background (i.e., pre-
viously published work) required for detecting zero-velocity or
stationary segments of sensor data from a foot-mounted inertial
system. Section III, our main contribution, develops an algorithm

to validate a gait cycle and detect toe-off and heel-strike events
using the non-stationary gyroscope measurements in the sagittal
plane. Section IV presents an illustrative example to demonstrate
the robustness of our proposed method. Section V compares the
results of our proposed method with some existing methods.
Section VI presents the conclusions and directions for possible
future work.

Notations: The following general notation will be used
throughout the paper. Bold uppercase and lowercase letters
denote a matrix and vector, respectively. Superscript/subscript
a and ω represent accelerometer and gyroscope signals, respec-
tively. Uppercase letters that are not bold denote scalars. For
any matrix A we use, AT and A−1 to denote the transpose
and inverse, respectively. IN represents an N ×N identity
matrix. The norms ‖ · ‖2 and ‖ · ‖1 indicate the �2 and �1 norms,
respectively.

II. BACKGROUND

A. Gait Events [30]

There are two main components of a gait cycle: stance and
swing. A typical gait cycle for a healthy adult consists of 62%
stance and 38% swing phase. These two gait phases are further
divided into eight events: Five (heel-strike, flat-foot, midstance,
heel-off, and toe-off) during the stance phase, and three (ac-
celeration, midswing, and deceleration) occur during the swing
phase [30]. In this work, we use gyroscope measurements in
the sagittal plane to detect toe-off and heel-strike events of the
stance phase of a gait cycle. The location of the toe-off and
heel-strike events detected using the gyroscope signal in the
sagittal plane vary depending on the location of the sensor on
the foot [12]–[22]. With the help of FSR and inertial sensors, it
was verified in [12], [13] that the local minima of the gyroscope
signal in the sagittal plane represent the toe-off and heel-strike
events when the sensor is attached to the instep region of the
foot.

B. Zero-Velocity Events [31], [32]

In this subsection, we provide a brief background of the
physical models of the inertial sensor data obtained from a
foot-mounted inertial system to segment the data as stationary
or moving. If ya

k ∈ R3×1 and yω
k ∈ R3×1 denote the measure-

ments of a three-axis accelerometer and a three-axis gyroscope,
respectively, at time instant k, then these measurements can be
modeled as

ya
k = sak + eak

yω
k = sωk + eωk . (1)

Here, sak and sωk denote the true specific force and angular
velocity experienced by the accelerometer and gyroscope, re-
spectively. Further, eak and eωk denote the measurement errors
of the accelerometer and gyroscope, which are assumed to be
white, mutually uncorrelated, and Gaussian distributed with zero
mean and covariance matrices σ2

aI3 and σ2
ωI3, respectively. To

distinguish stationary from non-stationary instances, we use the
zero-velocity detector. We define two hypotheses, H0 and H1,
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as follows:

H0 := Sensor is moving

H1 := Sensor is stationary. (2)

Mathematically, the signal model for the two hypotheses in (2)
can be written as

H0 :

{
∃k ∈ ΩW : sak �= gva

∃k ∈ ΩW : sωk �= 0

H1 :

{
∀k ∈ ΩW : sak = gva,

∀k ∈ ΩW : sωk = 0
, (3)

where g is the Earth’s gravity, va is the direction of the gravity
vector (which is unknown), and ΩW is a window of size W
consisting of the time samples {k, . . . , k +W − 1}. Given the
signal model in (3), it can be shown that the generalized log-
likelihood ratio test, denoted by Tk(y

a,yω) at time index k, for
detecting zero-velocity event intervals is given by

1

W

∑
k∈ΩW

{
1

σ2
ω

‖yω
k ‖22 +

1

σ2
a

∥∥∥∥ya
k − g

ȳa

‖ȳa‖
∥∥∥∥
2

2

}
H1

<γD, (4)

where ya=[(ya
k)

T , . . . , (ya
k+W−1)

T]T ∈ R3 N×1, yω=[(yω
k )

T

, . . . , (yω
k+W−1)

T ]T ∈ R3 N×1, ȳa = (1/W )
∑

k∈ΩW
ya
k ∈

R3×1, and γD is the detector threshold. The derivation of (4)
can be found in [31] and [32, Appendix B]. While [31] proposes
a zero-velocity event interval detector, [32] develops a two-step
detector to detect zero-velocity and trembling event intervals
which are associated with freezing of gait patterns in Parkinson
disease. The goal of the zero-velocity detectors in [31] and [32]
is to detect the stationary segments of the inertial sensor
data using the raw measurements from the accelerometer and
gyroscope sensors. Furthermore, it is also possible to use only
gyroscope measurements to identify foot-mounted inertial
sensor data as stationary or non-stationary regions [33]–[35].
In this work, we define a midstance event as the time instance
under H1 when Tk(y

a,yω) is minimum, i.e., if ΩMi
is a

segment of inertial sensor data of variable length Mi > 0.1
seconds, for the i-th stride under H1, then the midstance event
is mathematically expressed as

MSi ← arg min
k,k∈ΩMi

Tk(y
a,yω). (5)

We choose the time index when Tk(y
a,yω) is minimum as the

midstance event because during a midstance event the foot is
completely stationary. Note that previous works [12], [15], [36]
identified midstance phase of a gait cycle. For example in [12],
the region between the terminal contact (heel-strike event) and
initial contact (toe-off event) is defined as a stance phase. A
likewise definition was used in [15] to segment a gait cycle.
In [36], the zero-velocity events or updates are identified as
midstance phase. In (5), we define midstance event as a point in
the the midstance phase with the lowest energy obtained using
the test statistic in (4).

III. GAIT CYCLE VALIDATION AND SEGMENTATION

In this section, we develop a new approach to validate a gait
cycle and detect gait events such as toe-off and heel-strike, using
the gyroscope sensor data in the sagittal plane. The proposed
algorithm is applied only to the regions of the sensor data when
the sensor is moving, i.e., when hypothesisH0 in (2) is true. Our
goal is to extract a sparse representation of the segments of the
gyroscope signal for valid gait cycles.

A. Discrete Wavelet Transform

Multiresolution orthogonal representations, such as discrete
wavelet transform (DWT), are widely used in a variety of signal
and image processing applications [37]. Wavelet coefficients are
computed by integrating the product of a signal and oscillating
functions obtained by stretching and translating a locally os-
cillating basis function, referred to as a wavelet [38]. Because
of their low computational complexity and high accuracy in
representing signals, wavelets are used in many applications,
such as compression, denoising, and pattern recognition [38].

Let x ∈ RN×1 be an N -dimensional vector. To model x in
wavelet-domain, we use windowed discrete wavelet transform
(WDWT). The WDWT coefficients, denoted by k ∈ RU×V ,
depend on the window length, the windows overlap factor,
and the number of levels of the wavelet decomposition. In our
work, we define Ψ : RU×V → RN (the synthesis equation of
WDWT) as

Ψk := WDWT−1(k), (6)

whereas ΨT : RN → RU×V (the analysis equation of WDWT)
is defined as

ΨTx := WDWT(x). (7)

In this work, the length of the windowU depends on the sampling
frequency Fs, and is given as U = 2J , where J is the smallest
positive integer for which U ≥ Fs. The value of J determines
the maximum levels of wavelet decomposition. The length of V
depends on the percentage of overlap between two consecutive
windows and generates an overcomplete dictionary,k. IfV = 1,
then WDWT is the same as DWT. Furthermore, WDWT in
(6) and (7) satisfies a generalized version of Parseval’s iden-
tity [38], [39], i.e., ‖Ψk‖ = ‖x‖, and demonstrates the perfect
reconstruction property, i.e., ΨΨT = I .

B. Zero-Phase Filters as Matrices

Linear time-invariant filters are easy to implement and are
also efficient, especially when the frequency band of the signal
of interest is known. However, when designed as matrices and
used in batch-mode processing, these filters are computationally
expensive where the complexity increases as the number of sam-
ples increase. To overcome the computational load, the authors
in [40], [41] developed computationally efficient zero-phase
noncausal high-pass and low-pass recursive filter designs as
banded Toeplitz matrices. The banded Toeplitz allows using fast
solvers for a banded system of linear equations. Further, the zero-
phase property allows employing these filters in an optimization
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framework as matrix operators, without introducing any phase
distortions from the filter. We denote the zero-phase low-pass
filter matrix operator as LPFω0

(·), where

LPFω0
(x) := Lx = A−1Cx. (8)

Here, 0 ≤ ω0 ≤ 1/2 is the normalized 3dB cutoff frequency of
the low-pass filter, and A ∈ RN×N and C ∈ RN×N are banded
Toeplitz matrices [40], [41].

C. Sparsity-Assisted Wavelet Denoising (SAWD)

Let yωs ∈ RN×1 denote the measured gyroscope signal seg-
ment under hypothesis H0, where the superscript ωs indicates
measurement in the sagittal plane. The length of the signal
N depends on the speed of the foot and the threshold γD of
the zero-velocity event interval detector in (4), and varies with
every gait cycle. We begin by scaling yωs so that its amplitude
∈ [−1, 1]. If ys denotes the scaled gyroscope signal, then

ys = 2

[
yωs −max (yωs)

max(yωs)−min(yωs)

]
− 1, (9)

wheremax(·) andmin(·) are the maximum and minimum of the
input vector. In the next step, we use a 1D linear interpolation
filter on ys so that the length of the interpolated signal is equal to
the sampling rate. Let y denote the 1D linear interpolated signal,
and then

y = interp1(ys, t1, t2), (10)

where interp1 is the 1D linear interpolation function in MAT-
LAB or Python, and t1 and t2 are vectors containing sam-
ple points of length N and Fs, respectively. The scaling step
follows the interpolation step, and these two steps cannot be
interchanged. Note that in the signal preprocessing step (scaling
and interpolating), the gyroscope signal preserves the patterns
of interest of a valid gait cycle. The preprocessed signal is only
used for validating a gait cycle whereas the scaled non-stationary
segment is used for determining the toe-off and heel-strike events
because interpolation does not preserve the location of local
minima. In the next step, we minimize a cost function to extract
the DWT coefficients of a smoothed segment of a valid gait cycle
so that it preserves the typical observable patterns. In particular,
we solve the following optimization problem:

argmin
k

{
1

2
‖L(y − Ψk)‖22

}
, (11)

where L is the low-pass filter in (8) with a normalized cutoff
frequency ω0, and Ψk is the synthesis equation of the WDWT
in (6). Note that the optimization problem in (11) is the standard
least-squares problem and has a closed-form expression. Solving
(11) gives the set of DWT coefficients required to reconstruct
the low-frequency signal of the scaled gyroscope measurement
vector. However, many entries of the DWT coefficient matrix k
are close to zero and do not significantly contribute in the recon-
struction of the low-frequency signal. Therefore, we introduce
a regularization term to reduce the number of DWT coefficients
required to represent the low-frequency signal. The cost function
of the modified optimization problem, denoted by C(y,k), is

given as

C(y,k) = argmin
k

{
1

2
‖L(y − Ψk)‖22 + λ ‖k‖1

}
, (12)

where λ > 0 is the regularization parameter. The first term in
(12) is the data fidelity term, which is same as (11), whereas
the second term is the regularization term on the dictionary,
k, of DWT coefficients representing the low-frequency signal.
In (12), we simultaneously combine low-pass filtering, wavelet
representation, and a sparsity-inducing norm. We apply the al-
ternative direction method of multipliers (ADMM) [42, Chapter
3] to iteratively minimize the cost function in (12). We begin by
decoupling the cost function in (12) using the Douglas-Rachford
variable splitting method [43]. The cost can be rewritten as

argmin
k,u

{
1

2
‖L(y − Ψu)‖22 + λ ‖k‖1

}
,

such that u = k. (13)

Applying the augmented Lagrangian [42] to (13) we get the
following iterative optimization routine:

repeat :

u← argmin
u

{
1

2
‖L(y − Ψu)‖22 +

μ

2
‖u− k − d‖22

}
,

(14a)

k← argmin
k

{
λ ‖k‖1 +

μ

2
‖u− k − d‖22

}
, (14b)

d← d− (u− k),

until convergence, (14c)

where μ > 0 determines the rate of convergence and does not
affect the final value of the cost function in (12). The equation
(14a) is the standard least-squares problem, whose solution is
given as

u← (ΨTLTLΨ + μIN )−1(ΨTLTLy + μ(k + d)), (15)

where we use the perfect reconstruction property of wavelets,
i.e.,ΨΨT = IN . Expanding (ΨTLTLΨ + μI)−1 using the ma-
trix inversion lemma [44], we can further simplify (15) as

(ΨTLTLΨ + μIN )−1 = (ΨTCT(AAT)−1CΨ + μIN )−1

=
1

μ
(I − ΨTCTG−1ΨC), (16)

where G = (μAAT +CCT) is a banded matrix. Therefore,
(15) can be written as

u← 1

μ

[
I − ΨTCTG−1ΨC

]
(ΨTLTLy + μ(k + d)). (17)

The least-squares solution in (17) can be further simplified as a
two-step iterative problem and is given as

g ← 1

μ
ΨT(CT(AAT)−1Cy) + (k + d) (18a)

u← g − ΨT(CTG−1CΨ(g)). (18b)

The solution to (14b) is the solution to the least absolute
shrinkage and selection operator (LASSO) problem [45] and
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is expressed as

k← soft(u− d, λ/μ), (19)

where the soft-threshold function is defined as

soft(x, T ) :=

{
x− T (x/|x|), |x| > T

0, |x| ≤ T
. (20)

The complete algorithm is called sparsity-assisted wavelet de-
noising and is listed as Algorithm 1. Note that the matrix G is
always invertible when the degree of the low-pass filter is of the
third-order or lower [40], [41], [46].

Remark: The convergence of the Douglas-Rachford splitting
and the alternating direction of multipliers demonstrates a linear
convergence rate [47]. Because of the linear convergence rate
of the ADMM approach, the computational complexity of our
proposed method does not depend on the length of the signal or
the sampling rate, unlike existing methods.

D. Gait Cycle Validation and Segmentation

We generate a template of the DWT coefficients by taking the
average of the DWT coefficients obtained by solving (12) for
valid gait cycle segments of gyroscope data in the sagittal plane.
If kT denotes the template of the DWT coefficients, then

kT =
1

M

M∑
i=1

ki, (21)

whereM represents the number of valid gait cycles andki repre-
sents the DWT coefficients obtained by solving (12) for the i-th
valid gait cycle. Next, we compute the root-mean-square error,
denoted by RMSEi, between the extracted DWT coefficients
for a moving segment of the gyroscope data and the template
DWT coefficients as follows:

RMSEi =

⎡
⎣ 1

Fs

Fs∑
j=1

(kT,j − ki,j)
2

⎤
⎦
1/2

. (22)

A segment of the gyroscope signal measured in the sagittal plane
under hypothesisH0 is a valid gait cycle if

RMSEi < γGCVS, (23)

Fig. 1. Gait cycle validation and segmentation algorithm overview.
The proposed modularity-based approach consists of three modules.
(a) Sensor module. (b) Detection module. (c) Validation module. The
detection and validation modules are used to identify midstance, and
toe-off and heel-strike phase of a gait cycle, respectively.

where γGCVS is the template matching threshold. In our work,
we set γGCVS as one standard deviation distant from the mean
of the RMSE computed during the template generation task. If
(23) is true, then we determine the toe-off and heel-strike events
for the i-th stride, denoted by TOi and HSi, respectively, by
finding the local minima of the scaled gyroscope signal ys. The
first local minimum represents the toe-off event, whereas the
second represents the heel-strike event. We segment the scaled
gyroscope signalys in (9) into two or more segments, depending
on the smoothness of the signal, with a fixed threshold of 0.5.
If ΩTi

and ΩHi
represent, respectively, the first segment and

the union of the remaining segments of ys that are below the
threshold, then

TOi ← arg min
k,k∈ΩTi

ys, (24)

HSi ← arg min
k,k∈ΩHi

ys, (25)

where Ti and Hi are the lengths of the segments of ΩTi
and

ΩHi
. A real-time implementation of the gait cycle validation

and segmentation (GCVS) algorithm is listed in Algorithm 2 of
Appendix A.

IV. ILLUSTRATIVE EXAMPLE

In this section, with the help of an illustrative example, we
demonstrate our proposed method. We develop methods to
identify the cutoff frequency ω0 of the low-pass filter in (8)
and tune the parameter μ to improve the rate of convergence of
the SAWD algorithm.

A. Data Collection and Hardware

We used APDM Opal sensors [48] to collect accelerom-
eter and gyroscope sensor data for a participant walking on
a treadmill. The sensors operate at a sampling frequency of
Fs = 128 Hz and are firmly attached to the instep region of the
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Fig. 2. Scaled and interpolated gyroscope signal segments measured in the sagittal plane, with corresponding DWT coefficients. The solid line
indicates the mean value, and the shaded region indicates one standard deviation variance. (a) Gyroscope signal segments in the sagittal plane.
(b) DWT coefficients of the gyroscope signal segments.

foot with the help of elastic Velcro straps. Data from the sensors
was transmitted in wireless mode to a laptop and stored in HDF5
format. As a reference system, we used a GoPro camera placed
a few feet away from the treadmill. In addition, a digital clock
was also placed next to the treadmill, so that the readings on the
clock were clearly captured in the video data. The digital clock
readings were used to manually synchronize the video data with
the inertial sensor data (see Appendix B).

B. Experiment

To validate and segment a gait cycle, a healthy male par-
ticipant of age 30 was recruited. The participant stood on the
treadmill, with his feet in comfortable stance width. When a tone
sounded, the participant began to walk, slowly accelerating at a
comfortable pace and reaching gait speed of 1.34 m/s (3 miles/hr)
in the first 15 seconds of the trial. Then, for the next 15 seconds,
the participant walked at a steady pace of 1.34 m/s, which was
maintained with the help of the speed indicator on the treadmill.
Finally, in the last 15 seconds of the trial, the participant began to
slowly decelerate from a steady pace of 1.34 m/s to a standstill.
Each trial lasted for 45 seconds and was repeated seven times.
To generate the template of the DWT coefficient vector kT, we
used datasets from the treadmill walking experiment because
the dataset contains inertial sensor data with variable walking
speeds.

C. Template Generation

To detect midstance events, we set the zero-velocity detector
threshold γD = 2.0 in (4). The size of the window is set to
one-eighth of the sampling rate Fs, i.e., W = 16. Further, the
standard deviations of the accelerometer and gyroscope are
set to σa = 1.0 and σω = 0.8, respectively. The details of the
steps for obtaining the parameter of the zero-velocity detector
are presented in [32, Appendix D and E]. Next, using the
zero-velocity detector, we segment the gyroscope measurements
in the sagittal plane and detect the regions when the IMU is
not stationary, i.e., when hypothesis H0 is true in (2). The
segments of the gyroscope measurements in the sagittal plane
under hypothesisH0 are scaled and interpolated employing (10)
and (9), respectively. To design the WDWT in (6) and (7), we

select a Daubechies wavelet (db4 or D8) as the mother wavelet
because it closely resembles the shape of the gyroscope signal in
the sagittal plane for a valid gait cycle (see Appendix C). We use a
window length of the next highest power of the sampling rateFs,
expressed as a power of 2, i.e., U = 27 = 128. Further, we use
non-overlapping windows, i.e., V = 1, because the length of the
scaled segment N ≤ Fs for all valid gait cycles across varying
gait speeds of the treadmill walking trial [49]. In Fig. 2a and 2b,
we plot the scaled and interpolated gyroscope signal segments
and corresponding DWT coefficients for valid gait cycles of the
fifth trial of the treadmill experiment, selected at random. As can
be seen in Fig. 2a, each segment consist of observable patterns
of interest, i.e., “valleys” and “peaks.” Further, we notice that
the DWT coefficients in Fig. 2b consist of large coefficients
in the lower frequency scales [2j−1, 2j), j ∈ {1, 2, 3}, small
coefficients in the mid frequency scales [2j−1, 2j), j ∈ {4, 5},
and coefficients close to zero in the high frequency scales
[2j−1, 2j), j ∈ {6, 7}. The DWT coefficients in the lower fre-
quency scales represent the low-frequency signal. Therefore, it
is sufficient to retain these coefficients to reconstruct a tem-
plate of the gait cycle that preserves the observable patterns of
interest.

To determine the cutoff frequency of the low-frequency sig-
nal, we compute the Fourier transform of each segment and
select the cutoff frequency ω0 such that the range of frequen-
cies representing the dominant energy regions are retained. In
Fig. 3, we plot the N -point discrete Fourier transform (DFT)
of the scaled and interpolated gyroscope signal segments on
a normalized frequency scale 0 ≤ ω0 ≤ 0.5, where the length
of DFT is set to N = 512. As can be seen, the energy of the
segments resides in the lower frequency range of the normalized
frequency scale. Therefore, to obtain a smoothed template of the
input signal such that preserves its shape, we select ω0 = 0.025,
equivalent to 3.2 Hz, as shown in Fig. 3 with a dashed blue
vertical line. The cutoff frequency ω0 and the length of the
interpolated signal are used to construct the banded matrices
A and C. Using (8), we design a zero-phase low-pass filter as a
banded matrix [41].

In Fig. 4, we demonstrate the rate of convergence of the
SAWD algorithm across different values ofμ. Note thatμ affects
only the rate of convergence and not the final value of the cost
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Fig. 3. Spectrum plot of the scaled and interpolated gyroscope signal
segments. The solid line indicates the spectral mean value. The dashed
blue line indicates the normalized cutoff frequency ω0 = 0.025 of the
low-pass signal.

Fig. 4. The solid lines indicate the average value of the cost function
for different values of μ ∈ {0.01, 0.1, 1}. The convergence rate varies
with the value of μ, however, it does not affect the cost function.

TABLE I
RECONSTRUCTION ERROR AND NON-ZERO COEFFICIENTS

function. We plot the average value of the cost function for
μ ∈ {0.01, 0.1, 1} obtained for valid gait cycle segments of the
fifth trial of the treadmill experiment. As can be seen in Fig. 4,
the SAWD algorithm converges in less than five iterations on
average for μ = 0.1. Further, the SAWD algorithm takes 0.02±
0.01 seconds per gait cycle to converge on a Windows computer
(2.7 GHz Intel Core i7) running MATLAB 2016b, and thus
making it feasible to implement the algorithm in real time.

In Table I, we report the results of the average reconstruction
error and the average number of non-zero DWT coefficients
across different values of λ. The reconstruction error is defined
as the root-mean-square error between the reconstructed signal
ΨkT (see Fig. 5a) and the signal obtained by averaging the
low-frequency segments of valid gait cycles (see Fig. 5c). The
cutoff frequency of the low-frequency signal is same as the cutoff

frequency of the low-pass filter used in the SAWD algorithm.
Table I shows that, as the λ value increases, the reconstruction
error increases, but, the number of non-zero DWT coefficients
decreases. To find a good balance between the reconstruction
error and the number of non-zero DWT coefficients, we select
λ = 0.05.

We plot the outputs of the SAWD algorithm, Ψk and k, in
Fig. 5a and 5b, respectively. We notice that the low-frequency
signal Ψk obtained by solving (12) in Fig. 5a is smooth and
preserves the observable patterns of interest of a valid gait cycle.
Further, as shown in Fig. 5b, the dominant DWT coefficients
in the lower frequency scales [2j−1, 2j), j ∈ {1, 2, 3} remain
unaffected whereas the DWT coefficients in higher frequency
scales [2j−1, 2j), j ∈ {4, 5, 6, 7} are either zero or nearly zero.
The template of the DWT coefficients kT is obtained using
(21). It is shown as a solid line in Fig. 5b, which is a sparse
representation of the scaled and interpolated gyroscope segment.
In the fifth trial of the treadmill walking task, a total of 31 gait
cycles were identified from the video data, i.e., M = 31. In
Fig. 5c and 5d, we plot the scaled and interpolated low-frequency
signal for ω0 = 0.025 and the corresponding DWT coefficients
without applying the SAWD algorithm. We notice that the shapes
of the two smoothed signals in Fig. 5a and 5c are quite simi-
lar. However, the DWT coefficients obtained using the SAWD
algorithm contain fewer non-zero coefficients than the DWT
coefficients obtained using only the low-pass filter. Further, the
RMSE in (22) for the SAWD algorithm is small (0.246418 ±
0.229323) in comparison to that of the low-pass filtering method
(0.465160± 0.118028). Thus, the SAWD algorithm can extract
a sparse representation of a valid gait cycle in the form of DWT
coefficients with minimum RMSE.

D. Validation and Segmentation

To validate a moving segment of the inertial sensor data as a
gait cycle, we use the generated DWT coefficient template kT

and the DWT coefficientsk obtained using the SAWD algorithm
for any moving segment of the gyroscope signal in sagittal plane,
and compute the RMSE in (22). The threshold in (23), γGCVS,
is set to the maximum of one standard deviation of the RMSE
values obtained for the valid gait cycles of the treadmill walking
experiment, i.e.,γGCVS = 0.50. If a segment is a valid gait cycle,
then we compute the toe-off and heel-strike events using (24)
and (25), respectively. Table1 II compares the performance our
proposed method with an existing method implemented by Mo-
bility Lab software (MLBS) [48]. The MLBS gait segmentation
algorithm is based on a fixed thresholding method developed
in [12]. To evaluate the performance of our proposed method,
we define four metrics [48].

1) Toe-off angle: The angle of the foot as it leaves the floor
at push-off. The pitch of the foot when flat is zero.

2) Heel-strike angle: The angle of the foot at the point of
initial contact. The pitch of the foot when flat is zero, and
positive when the heel makes first contact.

1Results obtained in the first trial were not included because no video was
available
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Fig. 5. Scaled and interpolated gyroscope signal segments measured in the sagittal plane and its corresponding DWT coefficients. The solid
line indicates the mean value, and the shaded region indicates one standard deviation variance. (a) Reconstructed segments after applying the
SAWD. (b) DWT coefficients of the reconstructed signal. (c) Reconstructed segments after applying low-pass filtering. (d) DWT coefficients of the
reconstructed signal.

TABLE II
VALIDATION OF TOE-OFF, HEEL-STRIKE, SWING AS PERCENTAGE OF GAIT CYCLE USING THE GCVS METHOD

MLBS: Mobility labs software; GCVS: Gait cycle validation and segmentation.

3) Swing: The duration of a full gait cycle is the duration
between two consecutive heel-strike events. Swing is
defined as the percentage of the gait cycle for which the
foot is not on the ground, i.e., it is the ratio of the time
duration between the last heel-strike and toe-off events to
the time duration of the corresponding gait cycle.

4) Gait cycle: A gait cycle is a valid gait cycle if it consists
of exactly one heel-strike and one toe-off event, in that
order, between two consecutive midstance events.

When computing the number of valid gait cycles using video
data, we ignore the first stride because the foot starts from
a midstance event. A gait cycle in the video data is defined
as a valid gait cycle if it consists of exactly one heel-strike
and one toe-off event, in that order, between two consecutive
midstance events. In Table II, we use the DWT template kT

generated in the fifth trial and evaluate the performance of our
method in the remaining trials. We use a zero-velocity aided
foot-mounted inertial navigation system (INS) described in [25],
[26], [50] to estimate the pitch angle of the foot during the
gait. The INS uses the accelerometer and gyroscope sensor
measurements along with the zero-velocity event intervals [31],
[32], [51] to estimate the position, velocity, and orientation of
the foot via dead reckoning [52]. As can be seen in Table II, our
proposed method detects equal or more number of gait cycles
than the existing method across all trials, except the second,
of the treadmill walking task. In addition, the average values
of the estimated toe-off and heel-strike angles are within one
standard deviation of the existing method values. In Fig. 3a–3f
(see Appendix F), we plot the right foot gyroscope sensor data
in the sagittal plane along with the corresponding gait events
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TABLE III
PERFORMANCE OF MLBS AND GCVS ALGORITHMS

TUG: Timed up and go; SAW: Stand and walk; MLBS: Mobility labs software; GCVS:
Gait cycle validation and segmentation.

detected using the proposed method for the trials reported in
Table II.

To demonstrate the robustness of our proposed approach, we
use the left foot DWT template generated in the fifth trial of
the treadmill experiment for a healthy participant, and compute
the number of gait cycles detected for inertial sensor data col-
lected across seven participants with Parkinson disease. For our
sample, there were four females, the mean age 70.57± 5.65
years, the mean disease duration was 4.71± 4.54 years, and the
mean on-medication score on the motor section of the Move-
ment Disorders Society Unified Parkinson Disease Rating Scale
(MDS-UPDRS III) [53] was 28.71± 11.69. The description of
the data collection procedure and hardware is the same as in
Section IV-A. In this experiment, we assigned the participants
four tasks, namely timed up and go (TUG), 360◦ turn, stand and
walk (SAW), and open-ended walk for two minutes. In Table III,
we report the performance of our proposed method for two tasks
whose descriptions are as follows:

1) Timed up and go (TUG): The participant stands up, walks
3 meters from the chair, turns, walks back, and returns to
a sitting position.

2) Stand and walk (SAW): The participant stands at one end
of the walkway, with their feet comfortably apart and
their hands on their hips, for 30 seconds, when a tone
sounds. Then the participant walks 7 meters, turns, walks
back, and stops, now facing the opposite direction of their
starting position.

The ground truth was again determined using video data. We
ignored the open-ended walk task dataset because the partic-
ipant’s gait was not captured in the video data during some
instances of the trial. As can be seen in Table III, our proposed
method demonstrates an improved performance in detecting
valid gait cycles across different tasks. In addition, our proposed
method also detected gait cycles during turns when the gait did
not involve pivoting using either of the two feet.

V. NUMERICAL RESULTS

In this section, we compare our proposed method with existing
methods based on either thresholding or template matching and
thresholding. We evaluate the proposed and existing methods
using a publicly available database [16], [36] and an existing
database [32] for a fixed and variable sampling rate, respectively.

We use the prefixes online (ON) and offline (OFF) to indicate if
an existing method can be implemented in real time. The details
of implementing the existing methods are as follows:

� The peak detection (OFF-PDT) algorithm is an offline im-
plementation of the gait cycle validation and segmentation
algorithm which works on the principle of thresholding
the gyroscope signal in the sagittal plane [12]. In the first
step, the gyroscope signal is filtered using a high-pass IIR
filter with cutoff frequency 0.25 Hz. Next, the mid-swing
area is determined by finding the local maxima of the
gyroscope signal. Only peaks that are greater than 50◦/sec
are considered. In addition, if multiple adjacent peaks
within 500 millisecond are detected, the peak with the
highest amplitude is selected. In the final step, the local
minimum peaks within a±1.5millisecond interval around
the local maxima are searched such that the amplitudes of
the local minima are less than−20◦/sec, and the two local
minimums on either side of the mid-swing peak, represent-
ing the toe-off and heel-strike events, are separated by at
least 200 milliseconds.

� The subsequence dynamic time warping (OFF-SDTW) is
an offline implementation of the gait cycle validation and
segmentation algorithm which works on the principle of
thresholding and template matching [16]. To generate a
template of a valid gait stride, the gyroscope measurement
in the sagittal plane obtained from 25 elderly individuals
performing a 40 meter walk protocol, is manually seg-
mented, scaled, and interpolated. Given an input sequence
of gyroscope measurements in the sagittal plane, the OFF-
SDTW algorithm scales the amplitude of the gyroscope
measurements, and constructs a distance matrix which
captures the similarity measurements between the input
sequence and template. Note that the method proposed
in [16] can also be extended to multidimensional axes,
however, in this work we only considered the sagittal axis
of the gyroscope. In the next step, matrix which represents
the accumulated cost of warping the template to parts of the
input sequence is constructed. Thereafter, the local minima
of the top row of the accumulated cost matrix, which
represents the starting points of the warping paths are
determined using a fixed threshold γOFF−SDTW. Finally, a
monotonically decreasing path, called the “warping path,”
is traced from the local minima in the first row of the
accumulated cost matrix to the last row of the accumulated
cost matrix. Additional constraints based on the duration
and overlapping regions of the warping paths are also
applied to remove outliers. In our work, we determined the
optimal value of the threshold γOFF−SDTW by manually
incrementing its value in steps of five and selected the one
that gave the best results. We used a fixed threshold of
γOFF−SDTW = 20.0 in all our simulations.

� Dynamic time warping (ON-DTW) is a real-time imple-
mentation of the gait cycle validation and segmentation
algorithm which constructs a distance grid between the
given input sequence and the template signal, and finds
the shortest path through the grid which minimizes the
total distance between the two sequences [23]. The total
distance of the shortest path is the measure of similarity
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between the two sequences. For example, if the input
sequence is exactly same as the template sequence, then
the measure of similarity is zero. However, in many prac-
tical scenarios, it is very rare for the input sequence to
match the template sequence. Therefore, in practice, a
certain fixed threshold γON−DTW is used to determine
sequences that match closely with the template sequence.
In addition, we applied a fourth-order zero-phase low-pass
Butterworth filter with a cutoff frequency of 15 Hz to
smooth and reduce the variance of the similarity measure
of the input sequence. To generate a template signal, we
scaled, interpolated, and computed the average of the non-
stationary segments gyroscope signal in the sagittal plane
for the second experiment of the treadmill walking task.
Analogous to the GCVS algorithm, a similarity metric
is computed between the template signal, and the scaled
and interpolated non-stationary segment of the gyroscope
signal in the sagittal plane. If the similarity metric is less
than a fixed threshold γON−DTW, then the non-statioanry
segment represents a valid gait cycle. In our work, we set
γON−DTW as two standard deviations from the mean value
of the similarity measure obtained across all valid gait
segments of the second trial of the treadmill walking ex-
periment, i.e., we use a fixed threshold ofγON−DTW = 4.0
in all our simulations.

For the publicly available database [16], [36], the training
data to generate the template was not available. Therefore, to
generate the template of a valid gait cycle for the ON-GCVS
and ON-DTW methods, we used data from the treadmill walking
experiment. Furthermore, we did not include the MLBS in our
analysis because the proprietary software supports sensor data
from APDM Opal sensors only. However, the MLBS uses OFF-
PDT to validate and segment a gait cycle.

A. Fixed Sampling Rate (Excluding Turns)

1) Data Collection, Tasks, and Manual Segmentation:
We evaluate the proposed and existing methods using a pub-
licly available inertial sensor database [16], [36]. The database
consists of 45 participants, equally divided into three groups,
namely control participants, participants with Parkinson disease,
and geriatric participants. More details about the participants
included in the study can be found in [16, Table I]. Inertial
measurement units manufactured by Shimmer Sennsing were
mounted laterally to the heel of the participant’s right and left
shoe to acquire inertial sensor data from both feet simultane-
ously [54]. The data was recorded at a sampling rate of 102.4 Hz.
The participants were asked to perform two tasks:

� 40 meter walk: In this task, the participant walks along
a 10 meter straight path at a comfortable self-selected
speed, turns, walks back, returns to the starting position,
and repeats this routine two times.

� Free walk: In this task, the participant walks for two
minutes at a comfortable self-selected speed around
the University Erlangen Hospital where the study was
conducted.

Only strides from straight walking were identified and labeled
as ground truth. Turning movements with more than 45◦ per
stride were excluded in the free walk protocol. We refer to the
video data as gold standard data.

2) Metrics: To evaluate the proposed and existing gait cycle
validation and segmentation algorithms, we define three vari-
ables. The definition of each variable is as follows:

� Detection positives: The number of strides identified
by the selected gait cycle validation and segmentation
algorithm.

� True positives: The number of strides identified by the
selected gait cycle validation and segmentation algorithm,
and also labeled as valid stride in the gold standard data.

� False negatives: The number of strides not identified by the
selected gait cycle validation and segmentation algorithm.

Based on these variables, we define three performance metrics
namely precision, recall, and F1 score. Precision is defined as the
ratio of the number of true positives to the number of detection
positives. Precision is equal to one if all the strides identified
by the selected algorithm are labeled in the gold standard data.
Recall is defined as the ratio of the number of true positives
to the sum of the number of true positives and false negatives.
Recall is equal to one if no false negatives are identified, i.e.,
no stride is missed. F1 score is the harmonic mean of precision
and recall, and takes into account missing strides and wrongly
detected strides.

3) Data Analysis: In Table IV and V, we present the average
value of the performance metrics for the proposed and existing
methods. A total of 1746 and 4154 were identified in the gold
standard, excluding the turning movements, for the 40 meter
and free walk tasks, respectively. The best results are obtained
for the OFF-SDTW algorithm [16]. However, the OFF-SDTW
algorithm cannot be implemented in real time because the accu-
mulated cost matrix requires access to the entire input sequence.
Furthermore, the OFF-SDTW algorithm is also computationally
expensive because identifying the warping path requires a grid
search operation of complexityO(PQ), where P and Q are the
lengths of the template and input sequence, respectively. In con-
trast, the OFF-PDT algorithm is computationally inexpensive,
but the performance varies depending on the task selected. In ad-
dition, the precision values of the OFF-PDT algorithm are lower
than the OFF-SDTW method because turns were neglected in
the gold standard. The ON-DTW algorithm performs poorly for
geriatric participants because there is a significant mismatch be-
tween the template of a valid gait cycle of a healthy and geriatric
participant. The proposed ON-GCVS algorithm demonstrates
high recall values across control participants and participants
with Parkinson disease. However, the precision is slightly lower
because our proposed method can also detect gait cycles during
turns which were not included in the gold standard for database
in [16]. In the case of geriatric participants, our proposed method
performs significantly better than the ON-DTW algorithm even
when there is a mismatch between the template of a valid gait
cycle of a healthy and geriatric participant. Note that the template
used in the ON-GCVS method was generated using M = 31
valid gait cycles obtained from a healthy participant performing
a treadmill walking experiment as described in Section IV-A.
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TABLE IV
PERFORMANCE OF THE PROPOSED AND EXISTING METHODS FOR THE 40 METER WALK TASK [16], [36]

OFF-PDT: Offline peak detection algorithm; OFF-SDTW: Offline subsequence dynamic time warping; ON-DTW: Online dynamic time warping; ON-GCVS: Online gait cycle
validation and segmentation.

TABLE V
PERFORMANCE OF THE PROPOSED AND EXISTING METHODS FOR THE FREE WALK TASK [16], [36]

OFF-PDT: Offline peak detection algorithm; OFF-SDTW: Offline subsequence dynamic time warping; ON-DTW: Online dynamic time warping; ON-GCVS: Online gait cycle
validation and segmentation.

B. Variable Sampling Rate (Including Turns)

1) Data Collection, Tasks, and Manual Segmentation:
We evaluate the threshold invariance property of the proposed
and existing methods using real data collected from 16 partic-
ipants with Parkinson disease [32]. In our sample, there were
seven females, the mean age was 70.3 ± 7.9 years, the mean
disease duration was 5.0 ± 3.6 years, and the median off medi-
cation Movement Disorders Society Unified Parkinson Disease
Rating Scale Motor Subsection (MDS-UPDRS-III) Score was
35.5 (first and third quartiles: 30.5, 41.5). We use the Open-
shoe module to collect the accelerometer and gyroscope sensor
data [26]. We firmly taped the sensor to the heel of the left
shoe instead of the instep region of the foot. Further, the sensors
operated at a higher sampling frequency of Fs = 1000 Hz. The
sensors were powered by micro-USB cords whose other ends are
plugged into a USB-port of a laptop. The laptop, which weighs
less than 1.2 kilograms, was placed in a backpack carried by
the participant. Cords were firmly strapped around each leg, so
that they did not interfere with gait and there are minimal cord
movements captured by the sensors. To assess gait, we assigned
the participants several tasks one of which was the 12 meter
walk task. In the 12 meter walk task, the participant was asked
to walk forward along a full 6 meter straight path. On reaching
the end, the participant made a 180◦ turn and returned to the
starting point. The ground truth or gold standard was obtained
using video data. For the database in [32], turning movements
were also included in the gold standard.

2) Template Generation: Generating a template is essential
in both the ON-DWT and ON-GCVS algorithms especially

when the sampling rate varies. To select training data for tem-
plate generation, we used two criteria: a) the participant did not
exhibit freezing of gait or any abnormal gait pattern during the
trial, and b) the number of valid gait segments was maximum
across all participants. Only participant TT022 matched the cri-
teria for data selection, and the sensor data from valid gait cycle
segments was used to generate the DWT coefficient templatekT

and DTW template sequence.
3) Data Analysis: In Table VI, we present the results of

the average values of precision, recall, and F1 score for the 12
meters walk task, for the proposed and existing methods (see
Appendix E for full details). A total of 158 strides were detected
in the gold standard across all Parkinson disease participants.
The thresholds of the proposed and existing methods were held
constant and only the sampling rate of the sensors was varied. We
used the same performance metrics as defined in Section V-A.
As can be seen in Table VI, the performance of the OFF-SDTW
algorithm decreases as the sampling rate of the sensors in-
creases because the entries of the accumulated cost matrix vary
based on the sampling rate. Further, the computational cost of
identifying the warping path also increases with the sampling
rate. A like trend in the computational cost is also observed
for the OFF-PDT algorithm. However, the performance of the
OFF-PDT algorithm remains consistent across varying sampling
rate because the amplitude of the signal remains unaffected by
changing the sampling rate. The ON-DTW performs poorly
on increasing the sampling rate because the similarity metric
value between the template and the input sequence increases
on increasing the sampling rate. In contrast, the proposed ON-
GCVS method is computationally inexpensive and takes approx-
imately 0.067 seconds on an average per dataset. Furthermore,
the F1 score of the proposed method is as good as the offline
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TABLE VI
PERFORMANCE OF THE EXISTING AND PROPOSED METHODS FOR THE FREE WALK TASK [32]

OFF-PDT: Offline peak detection algorithm; OFF-SDTW: Offline subsequence dynamic time warping; ON-DTW: Online dynamic time warping; ON-GCVS: Online gait cycle
validation and segmentation.

implementation of the PDT algorithm and significantly better
than the existing real time method.

VI. CONCLUSION

We developed a robust and computationally efficient frame-
work to validate and segment a gait cycle in real time. We first
used the physical models of sensor data from a foot-mounted
inertial system to detect the stationary and moving segments
in the sensor data. Thereafter, to validate a moving segment
of sensor data as a gait cycle, we developed an optimization
routine called sparsity-assisted wavelet denoising. In SAWD,
we combined low-pass filtering, wavelets, and sparsity-based
methods to extract a sparse template of a valid gait cycle in the
form of DWT coefficients with minimum RMSE. Finally, we
detected midstance, toe-off, and heel-strike by finding the local
minima of the stationary and non-stationary regions of a valid
gait cycle. We demonstrated the robustness of our proposed ap-
proach by extracting a DWT coefficient template from a healthy
participant, and applying it to sensor data obtained from control
participants, participants with Parkinson disease, and geriatric
participants (see Appendix D for details about the datasets used
in this work). Our results showed a consistent performance, with
an average F1 score of 87.78% across all groups for a fixed
sampling rate. In addition, we also demonstrated the threshold
invariance property of our proposed method by keeping the
threshold fixed and varying the sampling rate. Our proposed
method yielded an average F1 score of 92.44% across all Parkin-
son disease participants for a variable sampling rate. Overall,
our proposed method required less training data, demonstrated
computational efficiency, and delivered comparable if not better
results than the existing methods.

In the future, we plan to develop an adaptive framework to
dynamically adjust the threshold of the zero-velocity detector
γD so that the edges of the zero-velocity intervals correspond to
the heel-off and flat-foot events. We also plan to design a system
which can dynamically generate the template signal in real-time
using the first L strides, and use the template signal along with
a fixed threshold to validate and segment the remaining strides
of a given task. A successful implementation will enable the
development of a personalized gait analysis system that will
adapt to individual gait patterns, and automatically validate and
segment the gait cycle. Furthermore, we also intend to integrate
the gait cycle validation and segmentation module with our
existing system design to detect and track freezing of gait in

Parkinson disease [32], and improve the accuracy of detecting
and/or predicting freezing of gait.
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